A new species of the *Pristimantis orestes* group (Amphibia: Strabomantidae) from the high Andes of Ecuador, Reserva Mazar

JUAN M. GUAYASAMIN¹ & ALEJANDRO F. ARTEAGA²

¹Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Av. Machala y Sabanilla, Quito, Ecuador. E-mail: jmguayasamin@gmail.com
²Tropical Herping, calle Leonardo Tejada y Gonzalo Endara, Quito, Ecuador

Abstract

We describe a new *Pristimantis* from La Libertad and Rumiloma, Reserva Mazar, Andes of Southeastern Ecuador, at elevations between 2895–3415 m. This species is assigned to the *P. orestes* group, from whose members it differs by its small body size (adult males ≤ 18.1 mm; adult females ≤ 23.7 mm), usually reticulated ventral pattern, and visible tympanum. The vocalization of the new species consists of a series of calls; each call is composed by a pulsed, non-modulated note in frequency, and with a dominant frequency of 3122–3171 Hz. A molecular phylogeny based on a fragment of the mitochondrial gene 12S shows that the new species is sister to *Pristimantis simonbolivari*.

Key words: Cañar, New species, *Pristimantis orestes* Group, Reserva Mazar

Introduction

The diversity of *Pristimantis*, currently with 449 species (AmphibiaWeb 2012), seems to be limitless. In only 12 years (since 2000), 97 species of this genus have been described (updated from Frost 2011) and there is no reason to think that the description rate will slow down, especially with the advent of molecular techniques, which have facilitated the discovery of cryptic diversity (e.g., Stuart *et al.* 2006; Fouquet *et al.* 2007; Elmer *et al.* 2007; Castroviejo *et al.* 2011).

The diversity of *Pristimantis* seems to be catalyzed by a combination of geographic and biological variables. The topographic and ecological complexity of the Andes has been proposed to favor allopatric speciation, both through niche conservatism or ecological shift (Graves 1988; Lynch & Duellman 1997). Additionally, allopatric speciation seems to be a very likely mechanism in groups that present low dispersal abilities and are sensitive to climatic factors, such as humidity and temperature (Wiens 2004).

In Ecuador, the exploration of Andean forests has resulted in the discovery of several new species of *Pristimantis* in recent years (e.g., Guayasamin & Funk 2009; Yáñez-Muñoz *et al.* 2010; Reyes-Puig *et al.* 2010;
Valencia et al. 2010; Arteaga-Navarro & Guayasamin 2011; Reyes-Puig & Yánez-Muñoz 2012). Herein, using morphological, molecular, and acoustic data, we describe a new species of the Pristimantis orestes Group (sensu Hedged et al. 2008), which is endemic of paramo and humid upper montane forest in the Andes of southern Ecuador and northern Peru (Hedges et al. 2008), and contains 17 species — Pristimantis atrabrucus (Duellman & Pramuk 1999), P. bambu (Arteaga-Navarro & Guayasamin), P. chimu (Lehr 2007), P. cordovae (Lehr & Duellman 2007), P. corrugatus (Duellman, Lehr, & Venegas 2006), P. mariaeae (Venegas & Duellman 2012), P. melanosager (Duellman & Pramuk 1999), P. orestes (Lynch 1979), P. patakos (Duellman & Pramuk 1999), P. pinguis (Duellman & Pramuk 1999), P. seorsus (Lehr 2007), P. simonbolivari (Wiens & Coloma 1992), P. simonsii (Bouleenger 1900), P. stictoboubonus (Duellman, Lehr, & Venegas 2006), P. stipa (Venegas & Duellman 2012), P. ventriguttatus (Lehr & Kohler 2007), and P. vidua (Lynch 1979). Hedges et al. (2008) noted that the Pristimantis orestes group is not monophyletic, and that morphological traits shared among species within this group are likely the product of convergent evolution to cope with similar habitats; the polyphyly of the P. orestes group was also inferred in the phylogeny of Pinto-Sánche et al. (2012). Our findings reveal that the new species is the sister species to P. simonbolivari.

Methods

Terminology and Morphological data: Generic and family names follow the taxonomy proposed by Hedges et al. (2008). Specimens were sacrificed with 20% benzocaine, fixed in 10% formalin and stored in 70% ethanol. Diagnoses and descriptions generally follow Duellman & Lehr (2009). We examined comparative alcohol-preserved specimens from the herpetology collection at the Museo de Zoología of the Universidad Tecnológica Indoamérica (MZUTI), Museo de Zoología of the Pontificia Universidad Católica del Ecuador (QCAZ), and Natural History Museum and Biodiversity Research Center of University of Kansas (KU). See Appendix 1. Morphological measurements were taken with Mitutoyo® digital caliper to the nearest 0.1 mm, as described by Guayasamin and Bonaccorso (2004), except when noted, and are as follow: (1) snout–vent length (SVL); (2) tibia length; (3) foot length; (4) head length; (5) head width; (6) interorbital distance; (7) upper eyelid width; (8) internarial distance; (10) eye diameter; (11) tympanum diameter; (12) radioulna length; (13) hand length; (14) Finger I length; (15) Finger II length = distance from outer margin of palmar tubercle to tip of Finger II; (16) disc of Finger III. Sexual maturity was determined by the presence of vocal slits in males and by the presence of eggs or convoluted oviducts in females.

Phylogenetics: The new species was included in a phylogenetic analysis published by Arteaga-Navarro and Guayasamin (2011), using the mitochondrial gene 12S. The methods related to DNA extraction, amplification, and sequencing, as well as those for phylogenetic inference were described in detail in Arteaga-Navarro and Guayasamin (2011). GenBank accession numbers are listed in Appendix 1.

Vocalizations: Sound recordings were made with an Olympus LS-10 Linear PCM Field Recorder and a Sennheiser K6–ME 66 unidirectional microphone. Calls were analyzed in the Sound Analysis Software RAVEN (Charif et al. 2004). Call variables were obtained as described in Hutter and Guayasamin (2012) and are: call rate, interval between calls, call duration, number of notes per call, call type (tonal or pulsed), number of pulses per call, dominant frequency, 1st harmonic frequency, and 2nd harmonic frequency.

Systematics

Pristimantis mazar Guayasamin & Arteaga, new species

Holotype. QCAZ 27556 (SC 12660), an adult female (Figs. 1, 2) obtained by Joe Mendelson, Michelle Cummer, and Martín Bustamante on February 2004, at La Libertad, Reserva Mazar (02.546589° S, 78.698375° W; 2895 m.a.s.l.), Cantón Azogues, Provincia Cañar, Ecuador; airline distance from Rivera is 6.6 km.

Paratypes. Paratypes QCAZ 27553–54 have the same collecting data as the holotype. Paratypes QCAZ 27493, 27503–05, 27507–08, 27511, 27514, 27519, 27536, 27555, 27560 were collected by Joe Mendelson, Michelle Cummer, and Martín Bustamante on February 2004, at Rumiloma, Reserva Mazar (02.574616° S,
A NEW SPECIES OF THE PRISTIMANTIS ORESTES GROUP

FIGURE 1. Adult female holotype of Pristimantis mazar, QCAZ 27556.

Diagnosis. The new species is placed in the genus Pristimantis, as diagnosed by Hedges et al. (2008), because of the presence of the following traits: cranial crests absent, dentigerous process of the vomers present, and T-shaped terminal phalanges. Pristimantis mazar is diagnosed by having: (1) skin texture of dorsum shagreen with few widely interspersed low tubercles, which became more abundant on flanks and posterior end of dorsum; occipital and dorsolateral folds low or absent; venter areolate; (2) tympanic membrane and tympanic annulus present, with upper rim obscured by supratympanic fold; (3) snout short, pointed in dorsal view and rounded in profile; (4) upper eyelid lacking enlarged tubercles; tubercles are low and almost indistinguishable from surrounding skin texture; cranial crests absent; (5) dentigerous process of vomers well developed, oblique in outline, positioned posterior to level of choanae and separated medially by distance less than width of odontophore, each process bearing 0–7 teeth in females and 0–3 teeth in males; (6) males with a small subgular vocal sac; vocal slits present; nuptial pads absent; (7) first finger shorter than the second; discs on fingers rounded, slightly expanded (Fig. 2); (8) fingers bearing narrow lateral fringes; palmar tubercle bifurcated distally; supernumerary tubercles round, fleshy (Fig. 2); (9) ulnar tubercles low or absent in females, present and low in males; inner tarsal fold present, short; (10) heel and tarsal tubercles low or absent in females, present and low in males; (11) toes bearing narrow fringes; webbing absent; Toe V slightly longer than Toe III; toe discs rounded and slightly expanded (Fig. 2); (12) inner metatarsal tubercle elliptical, about 1.4–2 times the size of outer, rounded metatarsal tubercle; supernumerary plantar tubercles round and fleshy (Fig. 2); (13) in ethanol, dorsum creamish gray to dark brownish gray, with or without darker marks and small white spots; lower flanks with a black-and-white pattern; venter from uniformly whitish cream to cream with darker marking that may form a reticulated pattern. In life, dorsum brown to reddish brown, with or without small white dots and dark brown marks; black spots on groin; flanks and venter cream to gray, usually with blackish mottling that may form a reticulated pattern; iris cream to pale brown, with reddish brown to orange horizontal streak; (14) small SVL in females 19.9–23.7 (mean = 21.5 ± 1.18, n = 10), in males 14.9–18.1 mm (mean = 16.6 ± 1.03, n = 10).

Similar species. The smaller, non-overlapping SVL of adult males of Pristimantis mazar readily distinguishes them from most species of the P. orestes group (P. atrabrachus, P. chimu, P. cordovae, P. corrugatus, P. melanogaster, P. orestes, P. pataikos, P. pinguis, P. simonsii, P. stictoboubonus; Table 1). Similarly, adult females of
<table>
<thead>
<tr>
<th>Species</th>
<th>SVL males (in mm)</th>
<th>SVL females (in mm)</th>
<th>Eyelid tubercles</th>
<th>Discs on outer fingers</th>
<th>Ulnar tubercles</th>
<th>Heel and tarsal tubercles</th>
<th>Cranial crests</th>
<th>Vocal slits</th>
<th>Ventral coloration</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. atrabrachus¹</td>
<td>18.9</td>
<td>22.7</td>
<td>Absent</td>
<td>Slightly expanded</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
<td>Creamy tan with fine brown reticulation</td>
</tr>
<tr>
<td></td>
<td>(n = 1)</td>
<td>(n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. bambu²</td>
<td>17.4–20.1</td>
<td>24.6–26.4</td>
<td>Several, barely visible; or 1-2 small</td>
<td>Slightly expanded</td>
<td>Present, coalesced into fold</td>
<td>Present, coalesced into fold</td>
<td>Absent</td>
<td>Present</td>
<td>Uniformly cream to grayish tan</td>
</tr>
<tr>
<td></td>
<td>(n = 13)</td>
<td>(n = 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. chimu¹</td>
<td>19.4–20.5</td>
<td>22.6–25.7</td>
<td>Several, small</td>
<td>Slightly expanded</td>
<td>Absent</td>
<td>Present, low</td>
<td>Absent</td>
<td>Present</td>
<td>Mottled tan and dark brown</td>
</tr>
<tr>
<td></td>
<td>(n = 2)</td>
<td>(n = 16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. cordovae¹³</td>
<td>19.9–27.1</td>
<td>23.2</td>
<td>Several, low</td>
<td>Slightly expanded</td>
<td>Present</td>
<td>Small tubercle on heel; absent on tarsus</td>
<td>Absent</td>
<td>Present</td>
<td>Tan with small gray spots</td>
</tr>
<tr>
<td></td>
<td>(n = 9)</td>
<td>(n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. corrugatus¹⁴</td>
<td>19.5–19.8</td>
<td>25.8–26.2</td>
<td>One prominent, conical tubercle</td>
<td>Broadly expanded</td>
<td>Present</td>
<td>Conical tubercle on heel; one low, diffuse tubercle on tarsus</td>
<td>Absent</td>
<td>Present</td>
<td>Creamy orange with brown reticulation and flecks</td>
</tr>
<tr>
<td></td>
<td>(n = 2)</td>
<td>(n = 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. mariaelenae⁵</td>
<td>16.0–19.4</td>
<td>23.7–27.8</td>
<td>Several, low</td>
<td>Slightly expanded</td>
<td>Present, coalesced into fold</td>
<td>Present, low</td>
<td>Absent</td>
<td>Present</td>
<td>White, cream, or orange-ochre with dark brown or black blotches</td>
</tr>
<tr>
<td></td>
<td>(n = 5)</td>
<td>(n = 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. mazar</td>
<td>14.9–18.1</td>
<td>19.9–23.7</td>
<td>Several, low</td>
<td>Slightly expanded</td>
<td>Absent or present and low</td>
<td>Absent or present and low</td>
<td>Absent</td>
<td>Present</td>
<td>Whitish cream to cream with darker marking that may form reticulation</td>
</tr>
<tr>
<td></td>
<td>(n = 10)</td>
<td>(n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dark gray</td>
</tr>
<tr>
<td>P. melanogaster¹⁶</td>
<td>20.6–22.8</td>
<td>24.2–24.7</td>
<td>Absent</td>
<td>Slightly expanded</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Dark gray</td>
</tr>
<tr>
<td></td>
<td>(n = 3)</td>
<td>(n = 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. orestes⁷</td>
<td>19.8</td>
<td>18.1–27.2</td>
<td>Absent</td>
<td>Slightly expanded</td>
<td>Present, low</td>
<td>Present, low</td>
<td>Absent</td>
<td>Present</td>
<td>Gray to pale brown spotted with brown</td>
</tr>
<tr>
<td></td>
<td>(n = 1)</td>
<td>(n = 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>continued next page</td>
</tr>
</tbody>
</table>
TABLE 1. (continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>SVL males (in mm)</th>
<th>SVL females (in mm)</th>
<th>Eyelid tubercles</th>
<th>Discs on outer fingers</th>
<th>Ulnar tubercles</th>
<th>Heel and tarsal tubercles</th>
<th>Cranial crests</th>
<th>Vocal slits</th>
<th>Ventral coloration</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. patakos</td>
<td>18.5–19.0</td>
<td>21.6</td>
<td>Absent</td>
<td>Slightly expanded</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
<td>Creamy gray</td>
</tr>
<tr>
<td></td>
<td>(n = 2)</td>
<td>(n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. pinguis</td>
<td>22.0–24.8</td>
<td>24.6–29.8</td>
<td>Absent</td>
<td>Slightly expanded</td>
<td>Coalesced into short fold</td>
<td>Absent</td>
<td>Present</td>
<td>Present</td>
<td>Tan with brown flecks or reticulation</td>
</tr>
<tr>
<td></td>
<td>(n = 4)</td>
<td>(n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. seorsus</td>
<td>17.6–19.4</td>
<td>20.9</td>
<td>Absent</td>
<td>Slightly expanded</td>
<td>Present as tubercles or as a fold</td>
<td>Conical tubercle on heel; those on tarsus forming ridge</td>
<td>Present, low</td>
<td>Absent</td>
<td>Mottled tan and gray</td>
</tr>
<tr>
<td></td>
<td>(n = 3)</td>
<td>(n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. simonbolivari</td>
<td>16.0–19.2</td>
<td>18.5–24.7</td>
<td>Absent or present and low</td>
<td>Slightly expanded</td>
<td>Absent or present and low</td>
<td>Absent or present and low</td>
<td>Absent</td>
<td>Present</td>
<td>Orange (males) or dark brown with lighter spots (females)</td>
</tr>
<tr>
<td></td>
<td>(n = 4)</td>
<td>(n = 25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. simonst</td>
<td>19.3–25.9</td>
<td>26.2–33.3</td>
<td>Absent</td>
<td>Slightly expanded</td>
<td>Coalesced into low fold</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Yellow with or without brown markings</td>
</tr>
<tr>
<td></td>
<td>(n = 10)</td>
<td>(n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. stictoboubous</td>
<td>20.0–21.5</td>
<td>26.0</td>
<td>Absent</td>
<td>Discs on Fingers I–II not expanded, others slightly expanded</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Cream with brown flecks</td>
</tr>
<tr>
<td></td>
<td>(n = 2)</td>
<td>(n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. stipa</td>
<td>15.6–24.4</td>
<td>35.1</td>
<td>Absent</td>
<td>Not expanded</td>
<td>Coalesced into low fold</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Dark brown with white spots or motting</td>
</tr>
<tr>
<td></td>
<td>(n = 4)</td>
<td>(n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. ventriguttatus</td>
<td>17.8–21.8</td>
<td>29.4</td>
<td>Present, low</td>
<td>Broadly expanded</td>
<td>Present</td>
<td>Small, present on heel and tarsus</td>
<td>Absent</td>
<td>Present</td>
<td>Brown with cream spots</td>
</tr>
<tr>
<td></td>
<td>(n = 3)</td>
<td>(n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. vidua</td>
<td>–</td>
<td>18.0–23.1</td>
<td>Present, low</td>
<td>Slightly expanded</td>
<td>Absent</td>
<td>Present only on tarsus</td>
<td>Absent</td>
<td>–</td>
<td>Cream with brown flecks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(n = 8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P. mazar are smaller than females of P. bambu, P. corrugatus, P. mariaelenae, P. melanogaster, P. pinguis, P. simonsii, P. stictoboubonus, P. stipe, and P. ventriguttatus (Table 1). The new species differs from P. vidua by its ventral color pattern (usually with a reticulated pattern in P. mazar; with minute brown flecking in P. vidua), skin texture (dorsolateral folds present in P. vidua and usually absent in P. mazar), and tympanum (visible in P. mazar, concealed beneath skin in P. vidua). The call of the new species has a higher dominant frequency (3122–3171 Hz in P. mazar; 2500–2560 Hz in P. bambu) and is longer (0.14–0.022 s in P. mazar; 0.005–0.006 s in P. bambu) than the call of Pristimantis bambu. Finally, P. mazar differs from its sister species mostly by having a reticulated venter (Fig. 3; uniform in males and females of P. simonbolivari), notorious black stripes on flanks (Fig. 3; uniform dark coloration in P. simonbolivari), and by inhabiting on the Cordillera Oriental of the Ecuadorian Andes (P. simonbolivari is restricted to one locality in the Cordillera Occidental). The two sister species are reciprocally monophyletic (Fig. 7).

FIGURE 2. (A) Right hand of Pristimantis mazar. (B) Right foot of Pristimantis mazar. Holotype, adult female (QCAZ 27556).

Description of the holotype. Adult female (QCAZ 27556; Figs. 1, 2). Head as long as wide, slightly wider than body; upper eyelid bearing few low tubercles; head width 38.5% of SVL; head length 39% of SVL; snout relatively short (snout to eye distance 15% of SVL), rounded in dorsal and lateral views; tongue longer than wide, posterior half notched and not adherent to floor of mouth; eye diameter larger than eye–nasal distance; nostrils not protuberant, directed anterolaterally; canthus rostralis weakly concave in profile; loreal region slightly concave; upper eyelid width 68% of interorbital distance; cranial crests absent; tympanic annulus distinct, except for upper border, which is obscured by supratympanic fold; tympanic membrane distinct; several low postical tubercles situated posteroventrally to tympanic annulus; choanae round, not concealed by palatal shelf of maxillary;
vomerine odontophores postero medial to choanae, oblique in outline, about the same size of choana, separated medially by distance less than width of odontophore, each bearing 7–10 teeth; skin on dorsum finely shagreen with interspersed low tubercles; dorsal folds absence, except for thin middorsal fold starting at tip of snout and ending at cloaca; skin of lower flanks and venter areolate; no discoidal or thoracic folds; cloacal sheath absent; two low ulnar tubercles barely evident; outer palmar tubercle oval, large (Fig. 2); subarticular tubercles prominent, round; supernumerary palmar tubercles low and rounded, much lower than subarticular tubercles; fingers bearing narrow lateral fringes; Finger I shorter than Finger II; disc of Finger I not expanded; all other discs slightly expanded, rounded to slightly truncate (Fig. 2); ventral pads defined by circumferential grooves.

Tibia length 40.8% of SVL; foot length 39% of SVL; tarsal and heel tubercles absent; inner metatarsal tubercle oval, about twice the size of the outer, rounded tubercle; subarticular tubercles round; plantar supernumerary tubercles indistinct; toes bearing narrow lateral fringes; webbing absent; all other toe discs expanded, rounded; toes with ventral pads well defined by circumferential grooves; relative length of toes: I < II < III < V < IV; Toe V longer than Toe III.

Measurements of holotype (in mm). SVL 21.3; tibia length 8.7; foot length 8.3; head length 8.3; head width 8.2; interorbital distance 2.5; upper eyelid width 1.7; eye diameter 2.3; tympanum diameter 1.0; radioulna length 4.6; hand length 5.1; Finger I length 3.2; Finger II length 3.6; Disc of Finger III width 0.7.

Coloration of holotype in preservative. Dorsal surfaces pale brown with dark gray marks, including interorbital bar, W-shaped occipital mark, sacral chevron, as well as thin middorsal line. Arms faintly barred. Thighs cream with black, oblique stripes. Flanks cream with contrasting black marking; throat cream with dark brown flecks. Venter cream with black reticulum (Fig. 1).

Coloration in life (based on field notes by Alejandro Arteaga and photographs; Fig. 3). Frogs have a dorsal brown to reddish brown coloration, with or without small white dots and dark brown marks (i.e., interorbital bar, chevrons). Black spots on groin area, indistinct when the animal is at rest. Flanks and ventral surfaces cream to gray, with fine blackish mottling that in most individuals forms a reticulated pattern; ventral portion of fingers light reddish brown. Iris cream to pale brown with reddish brown to orange horizontal streak.

FIGURE 3. Pristimantis mazar in life, not collected, from the type locality.

Variation. Males present vocal slits and median, subgular vocal sac, and lack nuptial pads. Ulnar and tarsal tubercles are more conspicuous in males than in females. Some males present a thin vertebral fold (QCAZ 27553, 27505) and/or dorsolateral folds (QCAZ 27553, 12602, 27554). Dorsal and ventral color variation in preservative is shown in Figure 4.

Vocalization. (QCAZ 49764; adult male recorded on Reserva Mazar on February 2010, temperature not recorded). Pristimantis mazar emits calls at an approximate rate of 9.3 calls per minute (n = 1). Each call is composed by a pulsed, non-frequency modulated note (Fig. 5). Call duration is 0.14–0.022 s (mean = 0.0185 ± 0.0032; n = 12); intervals between calls vary from 4.89 to 12.24 s (mean = 6.36 ± 2.097; n = 11). The fundamental
dominant is at 3122–3171 Hz (mean = 3148.9 ± 12.551; n = 12); the 1st harmonic is at 6169–6317 Hz (mean = 6244.4 ± 37.792; n = 12) and the 2nd harmonic is at 9294–9415 Hz (mean = 9328.2 ± 37.358; n = 12).

FIGURE 4. Color variation in paratypes of *Pristimantis mazar*. (A) Dorsal view. (B) Ventral view.

Etymology. This specific epithet *mazar* refers to the type locality of the species, Reserva Mazar. The epithet is a noun in apposition.

Distribution. *Pristimantis mazar* occurs at elevations between 2895 and 3415 m in three localities within
Reserva Mazar (Provincia Cañar, Ecuador; Fig. 6): La Libertad (S02.54804, W78.69741), Rumiloma (S02.57120, W78.74563), and Gasualpampa (S02.55558, W78.70150). The area is a patchwork herbaceous paramo, native evergreen montane forest, shrub, secondary forest and pastures.

FIGURE 5. Oscillogram and sonagram of the advertisement call of *Pristimantis mazar* (individual not collected).

Natural history. At Reserva Mazar, two distinct seasons are recognizable: a dry season (Oct/Nov - Jan/Feb) and a wet season (FCT 2008). *Pristimantis mazar* is a nocturnal, cryophilic and hygrophilic specialist of herbaceous/shrubby paramos and adjacent high evergreen montane forests. This dominant, and over-abundant rainfrog is active whenever the ambient temperature and humidity levels are favorable (mostly at night), at ground level and on low vegetation (0–67 cm from ground). Diurnal retreats for *Pristimantis mazar* include grass tussocks, leaf-litter and bromeliads. The species is highly vocal and ubiquitous in open paramo, but considerably less vocal and dominant within unbroken forest. Sympatric species of *Pristimantis mazar* include *P. bambu*, *P. pycnodermis*, *P. gagliardoi*, and *P. riveti*.

Discussion. The complexity of the genus *Pristimantis* is exacerbated by its outstanding diversity and recurrent morphological similarities. At this moment, the most recent topologies of *Pristimantis* (Heges et al. 2008; Pinto-Sanchéz *et al.* 2012), which contains about 20% of the described diversity of the genus, shows that the *P. orestes* group is not monophyletic. Under this hypothesis, similar morphologies (those that diagnose the group) have evolved multiple times, probably because of comparable environments and selective forces acting on species of different clades. Furthermore, at least one additional species groups within *Pristimantis* (i.e., *P. myersi* group) shares multiple morphological features that characterize the *P. orestes* group, also suggesting convergence. Within
the *P. orestes* group, the most closely related species to *P. mazar* is *P. simonbolivari* (Fig. 7), a species restricted to Caschca-Totoras, on the Ecuadorian Andes. However, our interpretation on the species relationships and evolution of morphological traits in *Pristimantis* may change as taxon sampling increase and more species are discovered. Currently, we hope that contributions like ours help in having a better understanding of this frog genus, as well as identifying areas of high endemism for conservation proposes. Given the available information on *Pristimantis mazar*, and following IUCN (2001) criteria, we place this species in the Data Deficient category. As the English common name for this species, we suggest *Mazar Rainfrog*. We suggest the name *Cutín de Mazar* as the common name in Spanish.

![Distribution map of Pristimantis mazar in Ecuador](image)

FIGURE 6. Distribution of *Pristimantis mazar* in Ecuador. The black dots indicate the localities from where the species is known.

Acknowledgements

Two anonymous reviewers provided valuable comments on an earlier version of this manuscript. The discovery of *Pristimantis mazar* was made possible by the support of Stuart White and Catherine Schloegel from Fundación Cordillera Tropical. We are highly grateful to Jesse Lewis, Seth Adams and all the enthusiastic people involved in the Round River Conservation Studies (RRCS) programs at Reserva Mazar during 2009 and 2010 for their assistance and companionship in the field. For access to collection specimens, we thank the Museo de Zoología of the Pontificia Universidad Católica del Ecuador and the Natural History Museum and Biodiversity Research Center of University of Kansas. Janeth Lessman created the distribution map of the new species. Research permits were issued by the Ministerio de Ambiente del Ecuador (Nº 008-09 IC-FAU-DNB/MA). This study was funded by the Universidad Tecnológica Indoamérica through the project “Patrones de Diversidad de los Anfibios Andinos del Ecuador”.

TERMS OF USE

This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.
A NEW SPECIES OF THE PRISTIMANTIS ORESTES GROUP

FIGURE 7. Maximum likelihood phylogeny of sampled species in the Pristimantis orestes group inferred using GARLI (lnL = -1384.3649; evolution model = GTR + G + I). Pristimantis croceoinguinis and P. ventrimarmoratus are used as outgroups.

Literature cited

Pristimantis vidua

Venegas, P. & Duellman W.E. (2012) Two syntopic new species of the

APPENDIX

APPENDIX I. Specimens examined. Genbank accession numbers are provided for Pristimantis mazar.

Pristimantis orestes.—Ecuador: Provincia Loja: 10 km S Saraguro, KU 165553; Parque Nacional Podocarpus, Cajanuma, QCAZ 45646, 45646. Provincia Azuay: 1 km on the road Susudel-Cuenca, MZUTI 706

Pristimantis mazar.—QCAZ 27556 (Genbank JF906313), QCAZ 27546 (Genbank JF906314), QCAZ 27572 (Genbank JF906315)

Pristimantis vidua.—Ecuador: Provincia Zamora Chinchipe: 15 km E Loja, KU 120085.